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1 Introduction

Public key infrastructures (PKIs) are being fielded in increasing size and numbers, but our oper-
ational experience to date has been limited to a relatively small number of environments. As a
result, there are still many unanswered questions about the ways in which PKIs will be organized
and operated in large scale systems. Some of these questions involve the ways in which individual
certification authorities (CAs) will be interconnected. Others involve the ways in which revocation
information will be distributed. In a 1994 report, the MITRE Corporation suggested that the
distribution of revocation information has the potential to be the most costly aspect of running a
large scale PKI [1].

In the MITRE report, it was assumed that each CA would periodically issue a CRL that listed
all of the unexpired certificates that it had revoked. Since the MITRE report was published, several
alternative revocation distribution mechanisms have been proposed. Each of these mechanisms has
its own relative advantages and disadvantages in comparison to the other schemes. We are working
to create mathematical models of some of the proposed revocation distribution mechanisms, which
we will use in order to determine under what circumstances each of the mechanisms is most efficient.

Most of the proposals have involved variations of the original CRL scheme. Examples include
the use of segmented CRLs, ∆-CRLs, and on-line certificate status protocols (i.e., the on-demand
issuance of an individual CRL). However, some schemes do not involve the use of any type of CRL
(e.g., hash chains [3]).

In this paper, we will present a model for segmented CRLs along with some conclusions about
segmented CRLs that can be drawn from the model. In comparing various options, we will assume
that relying parties request revocation information only when needed to perform a validation (i.e.,
no pre-caching of CRLs) and that they have perfect caches (i.e., no CRL segments are deleted from
the cache until they have expired). For each option, we will compute the request rate for CRL
segments as a function of time. As we will show, request rates vary over time. However, in building
a repository for a PKI, it is necessary to build one that is capable of handling incoming requests,
even when the request rate is at its peak, without unreasonable response times. As such, we will
be looking for distribution schemes that minimize peak loads on repositories as opposed to schemes
that minimize average loads.
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# certificates number of certificates that have been issued by this CA
# relying parties number of users who attempt to validate certificates signed by this CA
validation rate average number of certificates/day that a relying party attempts to validate
revocation rate fraction of certificates that are revoked per day
certificate lifetime number of days between a certificates issuance and expiration
CRL update rate number of times per day that CRLs are issued
# segments number of CRL segments that are issued
CRL header the cost of downloading an empty CRL
CRL entry the incremental download cost added by each CRL entry
# entries the average number of entries per CRL segment

Table 1: model parameters

2 The Basic Model

In the traditional model for CRLs, the certification authority periodically issues a CRL, which it
posts to a repository. Any relying party requiring revocation information retrieves the CRL from
the repository. In order to enhance performance, copies of the CRL may be distributed to several
sites. In our model, however, we will assume that all relying parties obtain CRL information from
the same repository1.

In order to examine the load on the repository from CRL requests, we must determine the rate
at which requests for CRLs are made over time. In order to do this, we will assume that CRLs
are issued on a regular basis and that every relying party will require the most up to date CRL in
order to validate certificates. Suppose, for example, that a new CRL is published at time 0. Then
from time 0 forward (or until the next CRL is published), relying parties will need this CRL in
order to validate certificates. Since we assume that each relying party has a perfect cache, each
relying party will only need to download the CRL from the cache the first time, after time 0, that
it attempts to validate a certificate.

In order to compute the overall CRL request rate, we need to know the probability density
function for validation attempts for a single relying party. If the number of relying parties is
reasonably large, then we can assume that the times at which validation attempts are made are
independent of each other (i.e., they occur at randomly distributed times). We can then use an
exponential interarrival probability density to model the timing of validation attempts. Then, by
definition, the probability that a relying party’s first validation attempt will occur in the interval
[t . . . t + dt], in the limit dt → 0, is

validation rate × e−validation rate×t
dt (1)

Since each relying party downloads the CRL at the time of its first validation attempt after time
0, equation (1) also represents the probability that any given relying party will send a request to
the repository for the CRL in the interval [t . . . t + dt]. Multiplying equation (1) by the number of
relying parties gives us the total expected number of requests to be made in the interval [t . . . t+dt]:

1If more than one repository is used, then the load on each repository could be approximated by dividing the
number of relying parties by the number of repositories.

2



D
R

A
FT

N(t) = # relying parties × validation rate × e−validation rate×t
dt (2)

Dividing both sides of equation (2) by dt gives us the request rate at time t:

R(t) =
N(t)
dt

= # relying parties × validation rate × e−validation rate×t (3)

Given that each CRL is valid for 1
CRL update rate days, the CRL request rate at any time can be

computed as R
(
t mod 1

CRL update rate

)
.

3 Segmented CRLs

We will now generalize the equations from the previous section to the case in which revocation
information is divided among some number of CRL segments. In some cases, certificate revocation
information may be divided among CRL segments in a way that attempts to minimize the number
of CRL segments that a relying party will need to download. In our model, however, we will
assume that revocation information is distributed at random among the CRL segments. From this
assumption, we can conclude that each validation attempt is equally likely to require access to any
of the CRL segments.

As in the previous section, we will begin by determining the probability density function for a
single relying party with respect to a single CRL segment (segment 1). A relying party will request
segment 1 from the repository in the interval [t . . . t + dt] iff it attempts to validate a certificate in
the interval [t . . . t + dt] that requires the use of segment 1 and it has not validated any certificates
in the interval [0 . . . t] that required the use of segment 1.

We will first determine the probability that a relying party will not have requested segment 1
in the interval [0 . . . t]. Since we are assuming an exponential interarrival probability for validation
attempts, we know from the Poisson law [5] that the probability that n validation attempts will be
made during an interval of length t is

[
(validation rate × t)n

n!

]
e−validation rate×t (4)

Since there is a probability of 1
# segments that segment 1 will be needed to perform any given

validation attempt, the probability that segment 1 will not be needed for any of n validation
attempts is

(
1 − 1

# segments

)n

(5)

Combining equations (4) and (5), we see that the probability that any given relying party will not
request segment 1 during the interval [0 . . . t] is
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∞∑
n=0

(
1 − 1

# segments

)n [
(validation rate × t)n

n!

]
e−validation rate×t (6)

which can be re-written as

e−validation rate×t
∞∑

n=0

1
n!

[(
1 − 1

# segments

)
(validation rate × t)

]n

(7)

From Taylor’s Theorem [6] we know that

ex =
∞∑

n=0

xn

n!
(8)

So, equation (7) can be simplified to

e−validation rate×te(1−1/# segments)(validation rate×t)
= e−(validation rate×t)/(# segments)

(9)

Next, we need to determine the probability that a relying party will need segment 1 during the
interval [t . . . t+dt] (in the limit dt → 0). The probability that one validation attempt will be made
in the interval [t . . . t + dt] is2

validation rate × e−validation rate×dt
dt (10)

Since

lim
dt→0

e−validation rate×dt = 1 (11)

equation (10) can be simplified to validation rate×dt. Since the probability that any given validation
attempt will require the use of segment 1 is 1

# segments , the probability that segment 1 will be needed
in the interval [t . . . t + dt] is

validation rate

# segments
dt (12)

By combining equations (9) and (12) and by multiplying the result by the number of relying parties,
we get that the total expected number of requests for segment 1 in the interval [t . . . t + dt] is

N ′
s(t) =

# relying parties × validation rate × e−(validation rate×t)/(# segments)
dt

# segments
(13)

2Since the interval [t . . . t + dt] is infinitesimally small, we can assume that the probability of more than one
validation attempt occurring is 0.
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Dividing both sides of equation (13) by dt gives us the request rate for segment 1 at time t:

R′
s(t) =

N ′
s(t)
dt

=
# relying parties × validation rate × e−(validation rate×t)/(# segments)

# segments
(14)

Finally, if equation (14) is multiplied by the number of segments we get the total request rate:

Rs(t) = # relying parties × validation rate × e−(validation rate×t)/(# segments)
(15)

Equation (15) shows us how CRL request rates change with the amount of segmentation. Since
Rs(0) = # relying parties × validation rate, it is clear that the peak validation rate is not affected
by the amount of segmentation. This would suggest that increasing the amount of segmentation
will not lead to the need for more powerful repositories. In fact, if repositories can, in general,
service requests for shorter CRL segments faster than requests for longer CRL segments, then this
model suggests that increasing the amount of segmentation would allow for the use less powerful
repositories to handle requests for CRL segments.

While not the focus of this paper, we must acknowledge that there are some drawbacks to
segmentation. First, while the peak request rate is not affected by segmentation, the average
request rate increases with the number of segments used since the request rate drops off more
slowly. This difference is depicted in figures 1 and 2. Both figures show CRL request rates over the
course of 24 hours for scenarios in which CRL information is updated once a day (at time 0 in these
graphs) and in which there are 300,000 relying parties each validating an average of 10 certificates
per day. Figure 1 represents the case in which there is a single CRL and figure 2 represents the
case in which revocation information is divided between two CRL segments. The increased average
request rate may not be a problem if the repository is dedicated to distributing CRL information.
However, if the repository is also used to distribute other information, then it may be preferable
to minimize the total number of requests rather than just the peak rate.

Segmented CRLs may also be less preferable from the relying party’s point of view. Each time
that a relying party needs a CRL segment that is not already in its cache to perform a validation it
must send a request to a repository and wait for the response before it can complete the validation.
As the number of CRL segments increases, so does the number of times that the relying party will
have to wait for CRL information from the repository.

4 Staggered CRL Issuance

In section 3 we assumed that all CRL segments were issued at the same time. However, given that
the request rate for a CRL segment declines over time, it may make more sense to stagger the
issuance of CRL segments. Taking the example from figure 2, we see that the request rate for each
segment at the time of issuance is 17.36 requests/second. However, after 12 hours, the request rate
has dropped to 1.43 requests/second. So, if the issuance of the two CRL segments were staggered
by 12 hours then the peak request rate would be only 18.79 requests/second as opposed to a peak
rate of 34.72 requests/second if both segments were issued at the same time (see figure 3). If there
were 3 CRL segments issued at 8 hour intervals then the peak request rate would drop to 16.64
requests/second (see figure 4). Unfortunately, the peak request rate does not continue to decline
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Figure 1: Unsegmented CRL
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Figure 2: Two CRL Segments

with increasing numbers of segments. With 4 CRL segments issued at 6 hour intervals, the peak
request rate increases slightly to 17.15. As the number of CRL segments approaches infinity, the
peak request rate approaches the peak rate for an unsegmented CRL (see figure 5).

In general, the request rate for segmented CRLs issued at evenly separated intervals is:

# relying parties × validation rate

# segments
e−(validation rate×t′)/(# segments)

s−1∑
i=0

e
−(i×validation rate)/(CRL update rate×(# segments)2)

(16)

where t′ = t mod
(

1
CRL update rate×# segments

)
Of course, in order to determine the optimal number of segments to use, one must consider

service rates in addition to request rates. Once both the request and service rates are known, a
queuing system can be used to determine the mean waiting times for relying parties for various
scenarios. Since the request rate is not constant, the equations to determine the exact mean waiting
times are rather complicated (see [2, 4]). However, the steady state solution for constant request
and service rates appears to provide a good approximation as long as the service rate exceeds the
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Figure 3: Two CRL Segments with Staggered Issuance
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Figure 4: Three CRL Segments with Staggered Issuance
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Figure 5: Fifty CRL Segments with Staggered Issuance
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Figure 6: Optimal Number of Segments with CRL Information Updated Daily

request rate by a sufficient amount. Using this approximation, we get that the mean waiting time
is WT ≈ 1

µ−λ(t) where λ(t) is the request rate and µ is the service rate [5].
If we assume that the amount of time needed to service a request for a CRL segment grows lin-

early with the size of the CRL segment, then average service time can be written as ST (s) =
CRL header + CRL entry × # entries. If # revoked is the average number of unexpired cer-
tificates that have been revoked then # entries ≈ # revoked

# segments and so ST (s) ≈ CRL header +
CRL entry×# revoked

# segments .
By using equation (16) to compute λ(0) and by using 1

ST (s) as an estimate for µ, we can
determine, for any given environment, the optimal segmentation scheme to use in order to minimize
the worst case mean waiting time for relying parties (or, alternatively, the scheme that will allow
for the use of the least powerful repository).

Figure 6 presents one example of how the optimal number of segments changes as the service time
becomes more dependent on the size of the CRL segment that is being requested. In this figure, as
before, we are using a scenario in which there are 300,000 relying parties each attempting to validate
10 certificates per day. In addition, revocation information is updated daily and the issuance of CRL
segments is evenly spread throughout the day. For all points on the graph, values for CRL header
and CRL entry × # revoked were chosen so that CRL header + CRL entry × # revoked = 50ms
(i.e., µ = 20 services/second for unsegmented CRLs). As predicted earlier, when the service rate
is independent of the amount of segmentation, breaking CRLs into 3 segments is optimal. At the
other extreme, when the mean service time is directly proportional to the CRL segment size (i.e.,
no fixed cost), mean waiting time is minimized by using individual CRLs.

Figure 7 shows the optimal segmentation values for a scenario in which revocation information is
updated every 10 minutes. Just as in the scenario used above, there are 300,000 relying parties each
attempting to validate 10 certificates per day. However, in order to handle the increased demand
for revocation information, we needed to increase the service rate to µ = 40 services/second. So, in
this figure, CRL header + CRL entry × # revoked = 25ms. Since, in this scenario, there is only a
0.23% chance that any given relying party will attempt to validate more than one certificate in a
span of 10 minutes, we can expect that almost every validation attempt will require downloading
a new CRL segment from the repository, even if unsegmented CRLs are used. As a result, there
is little benefit to downloading and caching large CRLs. This can be seen in figure 7, which shows

8



D
R

A
FT0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

op
tim

al
 n

um
be

r 
of

 s
eg

m
en

ts

CRL entry x # revoked (ms)

Figure 7: Optimal Number of Segments with CRL Information Updated Every 10 Minutes

that it is only optimal to use a relatively small number of segments if the service rate is unaffected
by the segment size. Once more than 0.7ms of the 25ms service time for unsegmented CRLs is
based on the CRL size, it is best to use individual CRLs.

There are some conclusions that we can draw from figures 6 and 7. As the number of revoked
certificates increases, we can expect the cost of downloading CRL information to increase. Since
the fixed cost (i.e., the cost of downloading an empty CRL segment) will not change, increasing
the number of revoked certificates will move us further to the right on the x axes of the two charts.
In other words, more segmentation is better when high revocation rates are expected and less
segmentation is better when low revocation rates are expected.

Larger CRL segments (i.e., less segmentation) also appear to be preferable when the revocation
information is updated relatively infrequently. The longer that a CRL segment is valid, the more
likely that a relying party will use that segment more than once. In other words, caching large
CRL segments will reduce the request rate to the repository more if the segments are valid for a
longer period of time. This can be seen in figures 6 and 7 where the optimal number of segments
for revocation information updated daily is always significantly smaller than the optimal number
for revocation information updated every 10 minutes.
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